函数、极限、连续习题总结
麻蛋,入门练习这么难,做一题不会一题 type 1:无穷小等价代换 这一种就是看敏感度的,看出来用出来那就简单,看不出来就完蛋,多看看无穷小等价代换的公式,传送门 PS:多通过图形结合记忆,理解着记不容易忘,作图传送门 比如这一个sinx−x∼−x36\sin x - x \sim -\frac{x^3}{6}sinx−x∼−6x3,x−sinxx - \sin xx−sinx还是sinx−x\sin x - xsinx−x前边有正负号总是忘怎么办,x的图像是步步高升,sinx\sin xsinx的图像就在-1和1之间浮动,那x−sinxx- \sin xx−sinx的图像肯定也是步步高升 type2:两个常用极限的运用 第一个极限就算了,跟凑数一样,看这一个$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x =...
How to Turn Setbacks into Success
video link Think back to your biggest setback. Not an obstacle, not a mistake. A setback is defined as a reversal or check in progress. It’s when you’re on a path, you’re moving forward, and you are unexpectedly bumped backwards. Through all my years as a journalist, I have interviewed hundreds of founders, business leaders, senators, celebrities, cultural icons. And in every interview, I saw a common theme. What they learned during their biggest setback led them to their most successful...
how to harness your inner voice
video link So today, what I want to do is talk to you about the most important conversations you have each day: the conversations you have with yourselves. My name is Ethan Cross. I’m the director of the Emotion and Self-Control Lab at the University of Michigan. For the past 25 years, I’ve been studying how people can manage their emotions. And one of the things that I’ve learned during that time - see, I’m managing my emotions right now - is that a key to managing one’s emotions...
日记
...
常用的求导公式
一、基本初等函数的导数公式 常数函数 f(x)=C⇒f′(x)=0f(x) = C \quad \Rightarrow \quad f'(x) = 0f(x)=C⇒f′(x)=0 幂函数 f(x)=xn⇒f′(x)=nxn−1f(x) = x^n \quad \Rightarrow \quad f'(x) = n x^{n-1}f(x)=xn⇒f′(x)=nxn−1 指数函数 f(x)=ex⇒f′(x)=exf(x) = e^x \quad \Rightarrow \quad f'(x) = e^xf(x)=ex⇒f′(x)=ex f(x)=ax⇒f′(x)=axlna(a>0,a≠1)f(x) = a^x \quad \Rightarrow \quad f'(x) = a^x \ln a \quad (a > 0, a \neq 1)f(x)=ax⇒f′(x)=axlna(a>0,a=1) 对数函数 f(x)=lnx⇒f′(x)=1xf(x) = \ln x \quad \Rightarrow \quad f'(x) =...
日记
...
常用的无穷小等价代换
无穷小等价代换是求极限时常用的方法,特别是在x→0x \to 0x→0的情况下。以下是一些常见的无穷小等价代换公式: 当 x→0x \to 0x→0 时: sinx∼x\sin x \sim xsinx∼x tanx∼x\tan x \sim xtanx∼x arcsinx∼x\arcsin x \sim xarcsinx∼x arctanx∼x\arctan x \sim xarctanx∼x 1−cosx∼x221 - \cos x \sim \frac{x^2}{2}1−cosx∼2x2 ex−1∼xe^x - 1 \sim xex−1∼x ln(1+x)∼x\ln(1 + x) \sim xln(1+x)∼x (1+x)a−1∼ax(1 + x)^a - 1 \sim a x(1+x)a−1∼ax(aaa 为常数) ax−1∼xlnaa^x - 1 \sim x \ln aax−1∼xlna(a>0a > 0a>0) loga(1+x)∼xlna\log_a(1 + x) \sim \frac{x}{\ln...
ε-X和ε-N对比
通俗解释:ε-X 语言与函数极限 核心思想:用“误差控制”描述函数无限逼近某个值的过程。 ε(epsilon):你允许的误差范围(任意小的正数)。 X(或δ):自变量的某个临界值,当自变量超过这个值(或接近某个点),函数值就会落在误差范围内。 定义目标:当自变量 xxx 无限趋近某个目标(如 x→ax \to ax→a 或 x→∞x \to \inftyx→∞),函数 f(x)f(x)f(x) 无限接近极限值 LLL。 ε-X 语言的定义(以 x→∞x \to \inftyx→∞ 为例) 定义: 若对于任意小的误差 ϵ>0\epsilon > 0ϵ>0,总存在一个临界值 XXX,使得当 x>Xx > Xx>X 时,函数值 f(x)f(x)f(x) 与极限 LLL 的差距小于 ϵ\epsilonϵ。即:∀ϵ>0,∃X>0,当 x>X 时,∣f(x)−L∣<ϵ.\forall \epsilon > 0, \exists X > 0, \text{当 } x > X \text{ 时}, |f(x)...
对于ε-N的理解
通俗解释数列极限的定量定义(ε-N定义) 我们可以把数列的极限想象成“一个数列无限逼近某个确定的数”。比如数列1,12,13,14,…1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots1,21,31,41,…,直觉上它无限逼近0。但数学需要严格定义这种“逼近”,于是有了ε-N定义。 核心思想: ε(epsilon):一个任意小的正数,代表你允许的“误差范围”。 N:一个自然数,表示从某一项开始,数列的所有后续项都会落在“误差范围”内。 定义: 如果存在一个数LLL,使得无论你选的误差范围ϵ\epsilonϵ多小(比如ϵ=0.1,0.01,0.001\epsilon = 0.1, 0.01, 0.001ϵ=0.1,0.01,0.001),总能在数列中找到某一项(比如第NNN项),之后的所有项(第N+1,N+2,…N+1, N+2,...
日记
...