一、基本初等函数的导数公式

  1. 常数函数
    f(x)=Cf(x)=0f(x) = C \quad \Rightarrow \quad f'(x) = 0
  2. 幂函数
    f(x)=xnf(x)=nxn1f(x) = x^n \quad \Rightarrow \quad f'(x) = n x^{n-1}
  3. 指数函数
    • f(x)=exf(x)=exf(x) = e^x \quad \Rightarrow \quad f'(x) = e^x
    • f(x)=axf(x)=axlna(a>0,a1)f(x) = a^x \quad \Rightarrow \quad f'(x) = a^x \ln a \quad (a > 0, a \neq 1)
  4. 对数函数
    • f(x)=lnxf(x)=1xf(x) = \ln x \quad \Rightarrow \quad f'(x) = \frac{1}{x}
    • f(x)=logaxf(x)=1xlna(a>0,a1)f(x) = \log_a x \quad \Rightarrow \quad f'(x) = \frac{1}{x \ln a} \quad (a > 0, a \neq 1)
  5. 三角函数
    • f(x)=sinxf(x)=cosxf(x) = \sin x \quad \Rightarrow \quad f'(x) = \cos x
    • f(x)=cosxf(x)=sinxf(x) = \cos x \quad \Rightarrow \quad f'(x) = -\sin x
    • f(x)=tanxf(x)=sec2x=1cos2f(x) = \tan x \quad \Rightarrow \quad f'(x) = \sec^2 x =\frac{1}{\cos^2}
    • f(x)=cotxf(x)=csc2x=1sin2xf(x) = \cot x \quad \Rightarrow \quad f'(x) = -\csc^2 x= -\frac{1}{\sin^2 x}
    • f(x)=secxf(x)=secxtanxf(x) = \sec x \quad \Rightarrow \quad f'(x) = \sec x \tan x
    • f(x)=cscxf(x)=cscxcotxf(x) = \csc x \quad \Rightarrow \quad f'(x) = -\csc x \cot x
  6. 反三角函数
    • f(x)=arcsinxf(x)=11x2,x(1,1)f(x) = \arcsin x \quad \Rightarrow \quad f'(x) = \frac{1}{\sqrt{1-x^2}}, \quad x \in (-1, 1)
    • f(x)=arccosxf(x)=11x2,x(1,1)f(x) = \arccos x \quad \Rightarrow \quad f'(x) = -\frac{1}{\sqrt{1-x^2}}, \quad x \in (-1, 1)
    • f(x)=arctanxf(x)=11+x2,x(,+)f(x) = \arctan x \quad \Rightarrow \quad f'(x) = \frac{1}{1+x^2}, \quad x \in \left( -\infty, +\infty \right)
    • f(x)=arccotxf(x)=11+x2,x(,+)f(x) = \operatorname{arccot} x \quad \Rightarrow \quad f'(x) = -\frac{1}{1+x^2}, \quad x \in \left( -\infty, +\infty \right)

二、导数的四则运算法则

  1. 加法法则
    (f(x)+g(x))=f(x)+g(x)(f(x) + g(x))' = f'(x) + g'(x)
  2. 减法法则
    (f(x)g(x))=f(x)g(x)(f(x) - g(x))' = f'(x) - g'(x)
  3. 乘法法则
    (f(x)g(x))=f(x)g(x)+f(x)g(x)(f(x) \cdot g(x))' = f'(x) g(x) + f(x) g'(x)
  4. 除法法则
    (f(x)g(x))=f(x)g(x)f(x)g(x)g2(x)(g(x)0)\left( \frac{f(x)}{g(x)} \right)' = \frac{f'(x) g(x) - f(x) g'(x)}{g^2(x)} \quad (g(x) \neq 0)

三、反函数的导数

反函数的导数是直接函数导数的倒数
如何理解这一句话,看例子:求y=arcsinxy=\arcsin x的导数

dydx=1dxdy=1(siny)=1cosy=11sin2y=11x2,x(1,1)\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{(\sin y)'} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}, \quad x \in (-1, 1)


四、复合函数的导数(链式法则)

y=f(u)y = f(u)u=g(x)u = g(x),则复合函数 y=f(g(x))y = f(g(x)) 的导数为:
dydx=dydududx=f(g(x))g(x)\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = f'(g(x)) \cdot g'(x)


五、高阶导数

  1. 二阶导数
    f(x)=ddx(f(x))f''(x) = \frac{d}{dx} \left( f'(x) \right)
  2. n 阶导数
    f(n)(x)=dndxnf(x)f^{(n)}(x) = \frac{d^n}{dx^n} f(x)
  3. 两个三角函数的n阶导
    dndxn(sinx)=sin(x+nπ2)\frac{d^n}{dx^n} (\sin x) = \sin \left( x + \frac{n\pi}{2} \right)
    dndxn(cosx)=cos(x+nπ2)\frac{d^n}{dx^n} (\cos x) = \cos \left( x + \frac{n\pi}{2} \right)
  4. 对于两个函数乘积的高阶导数的理解
    (fg)(n)=k=0nC(n,k)f(k)g(nk)(f \cdot g)^{(n)} = \sum_{k=0}^{n} C(n, k) \cdot f^{(k)} \cdot g^{(n-k)}
    这是一种套娃式的展开法则,和二项式定理(比如 (a+b)n(a+b)^n 的展开)很像!
    记忆技巧:对比二项式定理 (a+b)n=C(n,k)akbnk(a + b)^n = \sum C(n,k) a^k b^{n-k},莱布尼茨公式的展开方式几乎一模一样,只是把幂次换成了导数次数!

六、特殊函数的导数

  1. 参数方程求导
    x=x(t)x = x(t)y=y(t)y = y(t),则 dydx=y(t)x(t)\frac{dy}{dx} = \frac{y'(t)}{x'(t)}