1. sinnx\sin^n xcosnx\cos^n x[0,π2][0, \frac{\pi}{2}]上的积分

nn为偶数时

0π2sinnxdx=0π2cosnxdx=(n1)!!n!!π2\int_{0}^{\frac{\pi}{2}} \sin^n x dx = \int_{0}^{\frac{\pi}{2}} \cos^n x dx = \frac{(n-1)!!}{n!!} \cdot \frac{\pi}{2}

例如:

0π2sin4xdx=3412π2=3π16\int_{0}^{\frac{\pi}{2}} \sin^4 x dx = \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{3\pi}{16}

nn为奇数时

0π2sinnxdx=0π2cosnxdx=(n1)!!n!!\int_{0}^{\frac{\pi}{2}} \sin^n x dx = \int_{0}^{\frac{\pi}{2}} \cos^n x dx = \frac{(n-1)!!}{n!!}

例如:

0π2sin3xdx=231=23\int_{0}^{\frac{\pi}{2}} \sin^3 x dx = \frac{2}{3} \cdot 1 = \frac{2}{3}

2. 扩展到[0,π][0, \pi][0,2π][0, 2\pi]的情况

• 从00π\pi
利用对称性:

0πsinnxdx=20π2sinnxdx\int_{0}^{\pi} \sin^n x dx = 2 \int_{0}^{\frac{\pi}{2}} \sin^n x dx

0πcosnxdx={20π2sinnxdx,n为偶数0,n为奇数\int_{0}^{\pi} \cos^n x dx = \begin{cases} 2 \cdot \int_{0}^{\frac{\pi}{2}} \sin^n x dx, & n \text{为偶数} \\\\ 0, & n \text{为奇数} \end{cases}

• 从002π2\pi
利用周期性:

02πsinnxdx={40π2sinnxdx,n为偶数0,n为奇数\int_{0}^{2\pi} \sin^n x dx = \begin{cases} 4 \cdot \int_{0}^{\frac{\pi}{2}} \sin^n x dx, & n \text{为偶数} \\\\ 0, & n \text{为奇数} \end{cases}

02πcosnxdx={40π2sinnxdx,n为偶数0,n为奇数\int_{0}^{2\pi} \cos^n x dx = \begin{cases} 4 \cdot \int_{0}^{\frac{\pi}{2}} \sin^n x dx, & n \text{为偶数} \\\\ 0, & n \text{为奇数} \end{cases}